Inflation inertia in Turkish economy: dynamic conditional correlation-generalized autoregressive conditional heteroskedasticity (DCC-GARCH) and wavelet analysis
نویسندگان
چکیده
منابع مشابه
Generalized Autoregressive Conditional Heteroskedasticity
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an e...
متن کاملDynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models
Time varying correlations are often estimated with multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation models is proposed. These have the exibility of univariate GARCH models coupled with parsimonious parametric models for the c...
متن کاملDynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models Author(s):
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملImproving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform
In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive cond...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pressacademia
سال: 2020
ISSN: 2146-7943
DOI: 10.17261/pressacademia.2020.1306